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SUMMARY

This paper deals with the study of the dynamics of net vapor generation point in the boiling channel of
the steam generator of Kaiga-1 nuclear power plant. The dynamics has been studied by perturbing liquid
velocity at the inlet of boiling channel with a step function and heating rate with a ramp function. Both
finite volume method (FVM) and finite difference method (FDM) have been applied to solve the model
equations that have been developed to predict boiling boundary. The effect of thermal non-equilibrium
conditions on subcooled boiling has been taken into consideration. A comparative study of the two
methods has been carried out based on the analytical solution of the equations. The study shows that at
higher system frequency, increasing number of computational grids increase the accuracy of numerical
solutions using FVM while FDM fails to achieve the same. The superiority of FVM over FDM for the
problem has also been confirmed by grid convergence analysis. An attempt has also been made to find the
analytical solution of the effect of change of heat input on boiling boundary, which is an essential part of
computations for the simulation of startup and shutdown of the steam generator. Copyright q 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Movement of net vapor generation (NVG) point in the boiling channel of a steam–water natural
circulation (SWNC) loop at various thermohydraulic conditions is an important moving-boundary
phenomenon in which control volume in both two-phase steam–water region and single-phase
water region changes with time in the event of dynamic changes of various operating conditions
viz., heat flux, etc. This problem needs to be addressed for the plant transients such as startup and
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shutdown of boilers. Thermohydraulic phenomena of SWNC loop in a steam generator system
of nuclear power plants and thermal power plants is very complicated, particularly, during its
startup and shutdown. This phenomena includes various unstable situations such as flow reversal,
flow excursion, geysering effect and density-wave oscillation (Type-I and Type-II) [1, 2]. Several
studies [3–8] show that an accurate model for boiling boundary needs to be incorporated in
thermohydraulic models of SWNC loop for more realistic prediction of the phenomena.

Benedek and Drew [9] carried out frequency-domain analysis for the hydrodynamic effect on
boiling boundary in a typical boiling channel using linear model with a major simplification that the
phases remain at the state of thermal equilibrium at the boiling boundary. This assumption implying
that the enthalpy of liquid reaches saturation value at the boundary may not be valid for real-time
situations, particularly, during severe transients. Paruya et al. [3, 4] and Paruya and Bhattacharya
[6] presented a simplified quasi-steady model for boiling boundary in natural circulation steam
generator (NCSG) of an Indian nuclear reactor (Kaiga-1) to simulate reactor trip, feeder-pipe break
and steam generator tube leakage. Frepoli et al. [10] achieved improved prediction of moving
thermal quench back and forth in the core cooling during blowdown phase of large LOCAs by
solving the model equations of the thermal-hydraulic code COBRA-TF/FHMG using finite volume
method (FVM) with coarse meshing instead of finite difference method (FDM). van Bragt et al.
[8] developed a linearized nodal time-domain boiling boundary model (second-order linear ODE)
for predicting flashing-induced density instability of a two-phase natural circulation boiling water
reactor at low pressures. Garea et al. [11] carried out theoretical investigation successfully using
a moving-boundary nodal model to capture various instability phenomena in a boiling channel.
Zhang and Zhang [12] studied the transient behavior of dry expansion evaporators in the vapor-
compression refrigeration system developing a generalized moving-boundary model. The improved
model successfully predicted void fractions and wall temperatures under unsteady conditions.
Theoretical investigations [6, 7] of startup dynamics of SWNC loop suggest that the movement
of NVG point strongly influences the dynamics of a SWNC loop during its startup. On the other
hand, the prediction of dynamic instabilities such as geysering effect and density instabilities in the
loop requires accurate tracking of NVG point. From these viewpoints, special attention is required
for robust modeling approach for boiling boundary movement in the boiling channel of SWNC
loop of NCSG at various conditions of flow.

Although a significant amount of work on moving boiling boundary problems have already been
carried out, the literature survey [9, 13–15] shows that more realistic boundary conditions at NVG
point (boiling boundary) are required for sharp tracking of the position of the interface between
single-phase region and two-phase region. It is also needed to compare the performance of the
numerical schemes to determine the suitability of the scheme to solve the present moving-boundary
problem and other problems of similar nature. The boundary condition i.e. the liquid enthalpy at the
boiling boundary has been improved instead of assuming the enthalpy at saturation. The boundary
condition used in the present study accounts for the effect of thermal non-equilibrium at NVG
point. The thermal non-equilibrium condition at the NVG point was experimentally confirmed by
Saha and Zuber [16]. An extensive theoretical investigation on both hydrodynamic and thermal
effect on the boiling height has also been presented in the paper to understand the complete
dynamics of the boundary.

In view of the above, the moving-boundary problem of tracking NVG point has been studied by
solving time-dependent PDEs with the help of FDM and FVM. The discretization of PDE using
FVM and FDM has been done in such a way that it captures the motions of computational grids
(called moving grids). Since FVM and FDM with very fine grids compete very closely in regard
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to the application to moving-boundary problems, as demonstrated in the paper, a comparison of
the methods is essentially required to conclude about their performances. This has been made by
carrying out an analysis of grid convergence with reference to the analytical solutions derived
for the problem. While carrying out the comparison, due consideration was given to the fact that
acceptable accuracy of the solutions has been achieved by FDM with finer meshing of channel
geometry at the expense of greater computing time. On the other hand, FVM method is not only
accurate in nature but also requires a less computing time because of the fact that the method is
capable of handling coarse meshing of channel geometry.

During the discretization of the conservation equation using FVM, the differential equation is
integrated over each of the control volumes in the computation domain, given a piecewise profile.
In the present study, a piecewise linear profile has been assumed. Volume integrals of the advection
term in PDE are converted to surface integrals using the divergence theorem. The numerical
scheme of FVM essentially divides the domain into overlapping control volumes (grids), lending
itself to direct physical interpretation [17–20]. As a result FVM becomes more conservative than
FDM. The integration of the conservation equation during FVM-based discretization has been done
using Leibnitz rule. The specific advantage of the rule in the moving-boundary problems is that
it essentially accounts for the motion of control volume [21–24], which is particularly important
in the present study. The rule is also capable of retaining the global conservation by satisfying
the geometrical conservation law that states that the change in the domain volume in a time step
must be equal to the volumetric changes along domain boundary. The method is computationally
efficient because of maintaining an acceptable accuracy with coarse grids [8]. Another advantage
of the FVM is that it can be easily formulated for unstructured meshes, leading to handle boundary
conditions for unstructured shapes more accurately [25, 26]. These advantages of FVM have been
exploited in many computational fluid dynamics packages.

FDM essentially approximates partial derivatives with the differences derived from the approx-
imation of Taylor’s series expansion based on discrete number of points in space. Although the
numerical scheme of FDM can be utilized to cater to grid motions, it does not explicitly tell how
the quantity varies between the grid points [20]. Thus, the implementation of FDM is relatively
straightforward. When it is applied for structured rectilinear grids, the positions and connectivity of
grid points need not be stored explicitly. This implicit connectivity and uniform grid-point spacing
reduces memory use and simplifies computations. However, FDM suffers from several problems—
(i) for uniform rectilinear grids, the fixed arrangement of grids in space requires high resolution
in all locations to resolve high complexity in one location resulting in increased computation and
memory, and (ii) FDM is also not so accurate and computationally efficient for the unstructured
grids and for the situations in which one needs to handle the boundary conditions for irregular
shapes. Automatic mesh refinement schemes do help in the situations at the cost of implementation
complexity [27, 28].

2. FORMULATION FOR BOILING BOUNDARY COMPUTATION

Figure 1 presents a boiling channel in which a boiling boundary is shown at position z=�. This
position is assumed to be NVG point. NVG point is defined as a point along the axis of the boiling
channel, at which a measurable amount of voids (steam bubbles) form under subcooled boiling
conditions (Saha [29]). The region from z=0 to z=� has been assumed to be filled with water
(by the definition of NVG point) and the region z>� with two-phase steam–water mixture. This
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Figure 1. A typical boiling channel [29].

enables one to locate a sharp interface between the single-phase liquid and the mixture. Movement
of this NVG point in the boiling channel depends on various thermal and hydraulic conditions of
flow such as pressure, velocity, inlet enthalpy and heat input [7].

Modeling of boiling height (�) requires to formulate mass balance equation (Equation (1)) and
energy balance equation (Equation (2)) for single-phase liquid flow in the region from z=0 to
z=�. With the assumptions of insignificant viscous dissipation, negligible compressibility of liquid
phase and constant pressure [13–15], the equations have been combined to set up the governing
equation given by Equation (3).

Single-phase liquid mass balance:

��l
�t

+ �(�lvl)

�z
=0 (1)

Single-phase thermal energy balance:

��l hl
�t

+ �(�l hlvl)

�z
=Q (2)

Combining Equation (1)–(2), one gets

�hl
�t

+vl
�hl
�z

=q where q= Q

�l
(3)

It needs to be mentioned that as the compressibility of the liquid phase is negligible, the contribution
of pressure change to the change of liquid enthalpy during startup and shutdown at low pressures
is not significant. In order to reduce the complexity of the treatment, the effect of pressure change
has not been brought in Equation (2). Consequently, pressure computation has been avoided in the
present investigation. One may also note that as the startup and shutdown process progress through
large velocity changes at a fast pace as a result of changing heating rate, molecular transport of
momentum (which counts for viscous dissipation) is negligibly small compared with convective
transport.
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3. ANALYSIS OF MOVING-BOUNDARY PROBLEM FOR HYDRODYNAMIC EFFECT
ON BOILING BOUNDARY

As discussed in Section 1, the movement of NVG point is in the class of moving-boundary problems
in which control volume changes with time, the treatment of the problem with FVM and FDM
has been made in such a way that it essentially takes care of grid motions. The expressions of
the grid motions have been explicitly derived. In order to study the hydrodynamic effect on the
boiling boundary, vl (liquid velocity at the inlet of the boiling channel) in Equation (3) has been
varied with time following a step function while q , pressure p and inlet temperature Ti have been
kept unchanged. The numerical schemes for solutions of Equation (3) along with the improved
boundary conditions are discussed below.

3.1. FVM scheme

According to the FVM scheme [10], Equation (3) has been integrated over the entire single-phase
liquid zone (from z=0 to z=� in Figure 2) by adding the integrals of N number of computation
grids or nodes. For example, Equation (4) represents the integral for the second computation cell
in Figure 2, in which z varies from �1(t) to �2(t)∫ �2(t)

�1(t)

�hl
�t

dz+
∫ �2(t)

�1(t)
vl

�hl
�z

dz=
∫ �2(t)

�1(t)
q dz (4)

Using Leibnitz rule given by Equation (5), Equation (4) has been integrated based on the
assumptions—(1) a quasi-steady state is assumed at the inlet boundary and outlet boundary of
the single-phase zone, i.e. pressure and enthalpy at the inlet of heated channel and q are quasi-
steady, (2) enthalpy change is piece-wise linear throughout the single-phase height (linear liquid
temperature profile assumption of Levy [30]), i.e. enthalpy change is linear from inlet to NVG
point indicating hl� =hi +N�h, and (3) every cell receives uniform and constant heat Q. This
integration method has already been proved to be suitable for boiling system by several authors
[3–5]. Leibnitz rule is expressed by

d

dt

∫ �2(t)

�1(t)
f (�, t)dz= f (�2, t)

d�2
dt

− f (�1, t)
d�1
dt

+
∫ �2(t)

�1(t)

� f (�, t)

�t
dz (5)

The term on the left-hand side of Equation (5) has been determined using mean-value theorem.
Now, combining Equation (4) and (5), one obtains

d�2
dt

=2vl − 2q(�2−�1)

hl,2−hl,1
− d�1

dt
(6)

A general equation for nth computational node may be given by

d�n
dt

=2vl − 2q(�n−�n−1)

hl,n−hl,n−1
− d�n−1

dt
(7)

in which for computational node n=N ,�N gives the estimate of boiling height. The detailed
derivation of Equation (7) has been presented in the Appendix. The last term on the right hand of
Equation (7) may be termed as velocity of the inlet boundary movement of nth node. The resulting
set of N number of ODEs, as obtained from Equation (7) for N number of computation cells, has
been solved simultaneously using implicit Euler method to find �1,�2, . . . ,�N .
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Figure 2. Computation cells in single-phase liquid zone (from inlet to NVG point).

3.2. FDM scheme

FDM scheme has been implemented based on the assumptions made in FVM scheme. The assump-
tions include—(1) quasi-steady state condition prevails at the inlet boundary and outlet boundary
of the single-phase zone i.e. pressure and enthalpy at the inlet of heated channel and q are quasi-
steady, (2) enthalpy change is piece-wise linear throughout the single-phase height [30] and (3)
every cell receives uniform and constant heat Q.

In this scheme, Equation (3) has been discretized using FDM that assumes linear approximation
of Taylor’s series expansion of the enthalpy function hln(�n, t) for nth node. The expansion is
shown by Equation (8). The scheme was worked out by Benedek and Drew [9]

�hl,n
�t

+ �hl,n
��n

d�n
dt

= dhl,n
dt

(8)

Using the linear profile assumption of Levy [30] for liquid enthalpy, �hl,n/��n is written as

�hl,n
��n

= hl,n−hl,n−1

�n−�n−1
(9)

Now, from Equations (3), (8) and (9), one obtains

d�n
dt

=vl − q(�n−�n−1)

hl,n−hl,n−1
(10)

A set of N number of ODEs, as obtained from Equation (10) for N number of computation nodes,
has also been solved using implicit Euler method to find �N , which is the estimate of boiling
height.

3.3. Boundary conditions

More realistic boundary conditions at the boiling boundary (NVG point) have been considered
in the present investigation. Instead of assuming equilibrium boiling (saturated boiling) conditions
at the boundary, as proposed by [9, 13–15], the correlations of Saha and Zuber [16], which cater to
the effect of thermal non-equilibrium between phase and liquid phase, have been used to calculate
more accurate liquid enthalpy at the boundary. Saha and Zuber experimentally verified the fact that
subcooled boiling condition prevails at NVG point and proposed phenomenological correlations
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given by Equation (11) for a typical boiling channel. For both FVM and FDM, the enthalpy of
liquid at NVG point hl� has been calculated from the following equation:

hl� =hsat−0.0022
q ′′
wDhcpl
kl

if Pe�70000 (11a)

hl� =hsat−154
q ′′
w

�lvl
if Pe>70000 (11b)

Peclet number Pe is defined by:

Pe=Re ·Pr = Dhvl�l cpl
kl

(11c)

3.4. Analytical solution for hydrodynamic effect on boiling boundary

The analytical solution of Equation (3) for �N has been worked out using the method of charac-
teristics (MOC) [31]. The method is extensively used for the solution of the advection PDEs given
by Equation (12). The term advection is defined as the transport of a scalar quantity in a vector
field. For example, continuity equation for pipe flow is an advection PDEs

��

�t
+∇ ·�v=0 (12)

The analytical solution of �N can be obtained by solving the following equation derived from
Equation (3):

d�N
dt

=vl(t)−vl(t−�) (13)

The detailed derivation is presented in the Appendix. In Equation (13), � is the transit time required
by the liquid to travel from the inlet of boiling channel to the boiling boundary and it is calculated
by dividing boiling height with the inlet velocity. One may deduce the transfer function �′

N (s)/v′
l(s)

from Equation (13). The detailed mathematical manipulations are presented in the Appendix. The
transfer function may be used to study the dynamics with various time-dependent velocity changes
e.g. step changes.

4. ANALYSIS OF MOVING-BOUNDARY PROBLEM FOR THERMAL EFFECT
ON BOILING BOUNDARY

It is extremely difficult to derive numerical solution of Equation (3) for boiling height, when the
system under consideration is subjected to time-varying heating rate q at a constant vl . For the
case of time-varying q , nodal enthalpies vary with time. dh2/dt and dh2/dt cannot, therefore, be
eliminated from Equation (A3) and need to be computed. But one may find difficulties to compute
them from Equation (3) while computation of boiling boundary is the prime objective from the
equation. In the present investigation, the thermal effect on the boiling boundary has been studied
by ramping up q in Equation (3) keeping velocity unchanged. Substituting q in Equation (3) by
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q(0)(1+�t), where � is slope of ramp input, and solving the resulting equation using MOC, one
may obtain the final expression for boiling height, which is given by

�(t)=vl t+
hl�−hi −q(0)

(
t+ �t2

2

)

hl�−hi
�(0) (14)

The analytical solution of this problem has been worked out in detail and it is presented in the
Appendix. One may also note that the boiling height from Equation (14) has been determined with
the boundary condition given by Equation (11).

5. RESULTS AND DISCUSSION

5.1. Description of nuclear steam generator loop

Kaiga-1 preheat steam generator (the schematic is presented in Figure 3) is a U-tube heat exchanger
in which pressurized heavy water of primary heat transport unit flows through U-tubes and gives
up heat to light water flowing in the shell side of the heat exchanger. The two legs of the U-tube
bundle are known as hot leg and cold leg. At the hot leg heavy water is at relatively higher
temperature than that at the cold leg. Demineralized feed water (approximately 90% of total feed
water flow) is preheated in the heat exchanger called preheater located at the bottom of the cold
leg. In the preheater section, the feed water flow is equally split into two parts. One half of the
flow goes downward for mixing with the recirculating water from the down comer. The resulting
mixture enters the lower riser (LRI) section (the main boiling section of the steam generator). The
other half of the feed flow goes upward from the preheater and gets mixed with the steam–water
mixture coming from the LRI of the steam generator and enters the upper riser (URI). Maximum
heat transfer from the tube side to shell side takes place in this URI and a steam–water mixture
with high void fraction exits from the top of the URI. The saturated water from steam drum is

Figure 3. Steam–water flow circuit in NCSG of Kaiga-1 nuclear power plant.
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Table I. Geometrical configuration of loop.

Sl. no. Item Dimension

1 Steam drum length 4.585m
2 Steam drum diameter 2.4m
3 Length of upper riser section 10.07m
4 Diameter of upper riser 1.343m
5 Length of lower riser 2.04m
6 Diameter of upper riser 1.343m
5 Down comer length 12.11m
6 Down comer diameter 0.8320m

Figure 4. Initial nodal heights and nodal top boundary positions.

recirculated through the down comer after mixing with about 10% feed water (auxiliary feed) and
reheated drain flow in the upper section of the down comer.

5.2. Dynamics of boiling boundary

5.2.1. Hydrodynamic effect on boiling boundary. With the configuration of natural circulation
steam generator (NCSG), which is presented in Figure 3 and Table I, the results of the hydrodynamic
effect on the boiling boundary are presented here based on FVM, FDM and exact solution. Initial
values of nodal heights were shown in Figure 4, which were calculated from either Equation (7)
or Equation (10) under steady-state conditions of pressure of 6.0 bar and inlet temperature of
25◦C. Initial value of vl was 6.16×10−3m/s. The steady-state value of q was calculated to be
142.9W/kg. The velocity calculated from first principle [7] is very low at the initial phase of
NCSG startup due to the fact that the buoyancy force in the SWNC loop is not so significant
because of low heating rate. It may be noted that the thermo-physical properties of light water
were used in the present investigation. To study the hydrodynamic effect, a positive step change
(30%) of circulation velocity at the inlet of boiling channel was impressed under constant heat
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Figure 5. Response of boiling height using FVM, FDM and exact solution for 30% step
change of inlet velocity for N =10.

Figure 6. Response of boiling height using FVM, FDM and exact solution for 30% step
change of inlet velocity for N =3.

input of 142.9W/kg, constant inlet temperature of 25◦C and constant system pressure of 6.0 bar.
This step change was effected by decreasing flow resistance.

Figure 5 presents the time-dependent variations of boiling height computed with FVM, FDM
and exact solution for N =10. Numerical results indicate that maximum deviations from exact
solutions for FVM and FDM have been found to be 0.62 and 2.88%, respectively. Figure 6 shows
the variation of boiling height with time for N =3 and the corresponding deviations are 2.11 and
5.34%. Figures 5 and 6 also show that the numerical solutions are very close to exact solutions
at lower frequencies (when the circulation velocity is low) and the solutions differ appreciably
at higher frequencies. It is interesting to note that the solutions obtained by FVM are reasonably
closer to the exact solution, compared with the solutions obtained by FDM. Therefore, one can
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Figure 7. Response of nodal height using FVM for 30% step change of inlet velocity for N =10.

conclude that exact solutions at higher system frequencies can be satisfactorily approximated by
FVM with increased value of N of 10 while FDM fails to yield reasonably accurate results. It is
also important to mention that the system experiences higher frequencies when the effect of the
step change in velocity has reached to the boiling boundary. Therefore, the analysis establishes
the fact that it is required to compare the solutions for the transient responses of a system for
choosing a suitable numerical method. While comparing the steady-state results, uncertainties of
the numerical methods may sometimes be very less and may be, therefore, sometimes misleading
to adopt a suitable numerical method for a system.

Figure 6 describes the response of nodal height adaptations (��n =�n−�n−1) using FVM for
N =3. No oscillation is found in the first node and the effect of velocity change is experienced
immediately in the node. In the nodes (n>1), the out-of-phase oscillations of nodal adaptations
are seen. These out-of-phase oscillations are due to the transportation delay for individual node.
The delay is the transit time required by the liquid to travel from the inlet of boiling channel to
the nodal upper boundary and it can be calculated by

�n = �n
v

(15)

The oscillations appearing for the higher-order ODEs for higher nodes are due to the fact that
nodal computations in FVM are strongly dependent on the relative velocity between the velocity
of inlet boundary movement (d�n−1/dt) and the fluid velocity at inlet boundary (vl) as is evident
from Equation (7). For the first node, d�n−1/dt is zero because of the fixed inlet boundary, whereas
nonlinear changes of d�n−1/dt with time are observed for higher nodes. It is important to note
that in Figure 7 the oscillations of nodal adaptations continue for the time equal to the transit
time of fluid for the individual node. After the transit time �n−1 of previous node (n−1) elapses,
the oscillation disappears for each node (n). This is because of the fact that the velocity of inlet
boundary movement becomes zero (d�n−1/dt=0) after the corresponding transit time for n−1
node. One may also note that in Figure 7 when the �n−1 is over, the nodal height of nth node starts
to increase monotonically to a steady-state value following the dynamics of a first-order system
subjected to a step change in input. Therefore, it is evident that in a moving-boundary problem
analyzed with the help of FVM, the nodes (n>1) experience the effect of velocity of inlet boundary
prior to the direct effect of step change in fluid velocity. Figures 8–12 present the response of nodal
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Figure 8. Response of nodal height using FVM for 30% step change of inlet velocity for N =10.

Figure 9. Response of nodal height using FVM for 30% step change of inlet velocity for N =10.

height adaptations using FVM for N =10. Similar nature of oscillations as discussed is found for
this case. Figure 13 presents the response of the nodal top-boundary position of each node for
N =10. The time corresponding to the peak value (may be called as peak time) increases from
lower nodes to higher nodes.

Contrary to FVM, FDM scheme does not account for the effect of velocity of inlet boundary in
the nodal computations. The solutions for nodal heights using FDM scheme shown in Figure 14
are not oscillatory in nature. All the nodal height responses follow the first-order dynamics with
time delay except for the first node that experiences the effect of velocity change without time
delay.
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Figure 10. Response of nodal height using FVM for 30% step change of inlet velocity for N =10.

Figure 11. Response of nodal height using FVM for 30% step change of inlet velocity for N =10.

5.2.2. Analysis of grid convergence. The order of grid convergence is defined as the difference
between the numerical solution and the exact solution,

E= f (�z)− fexact=C(�z)�+HOTs (16)

where C is a constant, �z is the measure of grid spacing and � is the order of convergence. HOTs
are the higher-order terms. A second-order convergence has � equal to two. The order of grid
convergence determines the behavior of the solution error. Although a CFD code uses a numerical
algorithm to provide a theoretical order of convergence, the effect of the boundary conditions,
numerical models and grid reduce this order and the observed order of convergence will likely
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Figure 12. Response of nodal height using FVM for 30% step change of inlet velocity for N =10.

Figure 13. Response of nodal boundary using FVM for 30% step change of inlet velocity for N =10.

be lower than the theoretical order. Methods for examining the grid and temporal convergence of
CFD simulations are discussed by Roache [32].

Neglecting HOTs in Equation (16) and taking the logarithm on both sides of the equation, one
may obtain the following equation:

log(E)= log(C)+� log(�z) (17)

The order of convergence � can be obtained from the slope of the curve of log(E) versus log (�z).
If such data points are available, the slope (�) can be computed from a least-square fit of the data.
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Figure 14. Nodal height variation with time using FDM for 30% step change of inlet velocity for N =10.

However, the algorithm is not as efficient as expected because of the fact that both the simplification
by neglecting HOTs and the least-square fit introduce some uncertainties in determining the order.

A more direct evaluation of �, as discussed by Roache [32], can be obtained from three solutions
using a constant grid refinement ratio r . The expression for � is given by

�=
log

(
f4− f2
f2− f1

)

log(r)
(18)

where, f1, f2 and f4 are the degrees of closeness of numerical solutions to the exact solution
(1−EN ) corresponding to the normalized grid spacing 1, 2 and 4. EN is the error of numerical
solution obtained from Equation (19). Table II presents values of EN at various normalized grid
spacing for a run of 500 s

EN =
∣∣∣∣�N ,exact−�N

�N ,exact

∣∣∣∣ (19)

Using Equation (18) and grid refinement ratio (r) of 2 obtained from normalized grid spacing
Table II, the observed � has been calculated to be 1.379 and 0.943 for FVM and FDM, respectively
The observed order of grid convergence indicates that FVM is superior to FDM in regard to grid
convergence and accuracy. FDM shows first-order convergence. This can also be confirmed by the
non-oscillating variation of error with time for FDM and the oscillating variation of error with
time for FVM. The variations are presented in Figure 15. The errors of FVM (Table II) indicate
that for coarse grids, FVM shows higher-order accuracy, establishing the facts that the method is
more conservative than FDM and more computationally efficient. It is also important to note that
with fine grids (N =40), both the methods yield the same order of accuracy.

5.2.3. Thermal effect on boiling boundary. As mentioned earlier, the thermal effect on the boiling
boundary was studied by ramping up the heating rate (W/kg). The analytical solutions given by
Equation (14) are presented in Figure 15 for �=0.001,0.01 and 0.1. It is reflected from Figure 16
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Table II. Grid convergence analysis for a run of 500 s.

No. of Normalized grid FVM error , FDM error , FVM solution, FDM solution, Exact solution,
grid (N ) spacing (=Nmax/N ) EN EN �N �N �N ,exact

10 4 0.009635 0.010156 3.877 3.801 3.84
20 2 0.002865 0.003646 3.851 3.826 3.84
40 1 0.00026 0.00026 3.841 3.839 3.84

Figure 15. Temporal variation of error for FVM and FDM.

Figure 16. Thermal effect on the boiling height at constant inlet velocity.

that the boiling channel experiences the effect of the change in heating rate without any time delay.
The boiling height decreases fast with the increase in heating rate. One may anticipate that the
slope � has a critical value above which the solution will be unstable. It is important that care
must be taken while carrying out the startup operation of a steam generation unit by ramping up
heating rate.
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6. CONCLUSIONS

The above theoretical investigation of the moving-boundary problem is very much relevant to the
startup phase of NCSG and FVM has been proved to be a sound scheme to solve the problem. This
FVM can be preferentially used in the complicated situations where the exact solutions are difficult
to obtain. During severe transients such as startup or shutdown, FDM with N =10 fails to secure
reasonably accurate solution that is obtained by FVM (Figure 4) because of more conservative
formulation with FVM which essentially considers grid volume rather than grid point. With even
finer grids, N =40, as is evident from Table II, the two methods closely compete. Grid convergence
analysis and Table II establish the facts that FVM has higher order of grid convergence and is more
computationally efficient than FDM. Temporal variation of error (EN ) and nodal height (��n) in
FVM follows second-order dynamics while the same in FDM follows a first-order dynamics. The
optimization for compromising among solution accuracy, solution stability and computational load
(CPU time) may be made for the better performance of FVM, although the same is true for any
numerical simulation to be more efficient. This is much important for real-time simulation. It has
been observed by numerical experiment that the optimum number of computational nodes strongly
depends on the critical frequency defined as the ratio of inlet velocity to initial boiling height.
Study on the thermal effect on the boiling boundary indicates that unlike the hydrodynamic effect,
the effect of change in heating rate on the boiling height is instant, i.e. boiling height changes
without any time delay. Since at the critical heating rate corresponding to the critical value of �
the solution becomes unstable, it can be recommended that heating rate should be adjusted so as
to remain below this critical value. It is also required to compare the computation results with
experimental data or the data using sophisticated CFD packages.

APPENDIX A: CALCULATION OF BOILING BOUNDARY USING FVM

Equation (3) is integrated applying Leibnitz integral rule for i=1 to 2

∫ �2(t)

�1(t)

�h1
�t

dz+
∫ �2(t)

�1(t)
v1

�h1
�z

dz=
∫ �2(t)

�1(t)
q dz (A1)

Leibnitz integral rule is

d

dt

∫ �2(t)

�1(t)
f (�, t)dz= f (�2, t)

d�2
dt

− f (�1, t)
d�1
dt

+
∫ �2(t)

�1(t)

� f (�, t)

�t
dz (A1a)

Defining h1=h1(�1) and h2=h1(�2) and substituting h1 and h2 in the result of integration, one
gets

d

dt

∫ �2

�1
h dz−h2

d�2
dt

+h1
d�1
dt

+v1h2−v1h1=q(�2−�1) (A2)

Substituting the linear-average value of h(h=(hl +h2)/2), one obtains

h

(
d�2
dt

− d�1
dt

)
+ �2−�1

2

(
dh2
dt

+ dh1
dt

)
−h2

d�2
dt

+h1
d�1
dt

+vl h2−v1hl =q(�2−�1) (A3)
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For a constant q as assumed,

dh2
dt

= dh1
dt

=0 (A4)

From Equations (A3) and (A4), one gets

h1+h2
2

(
d�2
dt

− d�1
dt

)
−h2

d�2
dt

+h1
d�1
dt

=v1(h1−h2)+q(�2−�1) (A5)

or

(h2−h1)
d�2
dt

−(h2−h1)
d�1
dt

=−2v1(h1−h2)−2q(�2−�1) (A6)

Finally,

d�2
dt

+ d�1
dt

=2v1− 2q(�2−�1)

h2−h1
(A7)

Integration from node n to node n+1 results in

d�n+1

dt
=2v1− 2qw(�n+1−�n)

hn+1−hn
− d�n

dt
(A8)

APPENDIX B: ANALYTICAL SOLUTION OF BOILING BOUNDARY FOR
TIME-DEPENDENT VELOCITY (METHOD OF CHARACTERISTICS)

�h
�t

+v(t)
�h
�z

=q, 0�z��(t) (B1)

For moving boiling boundary, z(0)=�(0).

BC: h(0, t)=hi
IC: h(z,0)=hi +az

Linear profile of enthalpy has been assumed as mentioned earlier. hi is enthalpy at channel
inlet.

According to the definition of h=h(z, t), one can write

dh

dt
= �h

�t
+ �h

�z

(
dz

dt

)
(B2)

Comparing Equation (B1) and Equation (B2)

dh

dt
=q (B3)

dz

dt
=v(t) (B4)

Integrating Equation (B4), one gets

z(t)=
∫

v(t)dt+c2 (B5)

c2 is integration constant.
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Now the time-dependent change of boiling boundary is given by

d�

dt
= dz

dt

∣∣∣∣
t
− dz

dt

∣∣∣∣
t−�

=v(t)−v(t−�) (B6)

� accounts for transportation delay and is defined by �(0)/v(0). Taking Laplace transform of
Equation (B6), one obtains

�′(s)
v′(s)

= 1−e�s

s
(B7)

APPENDIX C: EXACT SOLUTION OF BOILING BOUNDARY FOR TIME-DEPENDENT
HEAT INPUT (METHOD OF CHARACTERISTICS)

q is ramped up according to q(0)(1+ t).
Replacing q by q(0)(1+ t) and h1 by h in Equation (3), one obtains

�h
�t

+v
�h
�z

=q(0)(1+ t), 0�z��(t) (C1)

IC: h(z,0)=hi +az
BC: h(0, t)=hi

According to the definition of h=h(z, t), one can write

dh

dt
= �h

�t
+ �h

�z

(
dz

dt

)
(C2)

Comparing Equation (C1) and Equation (C2)

dh

dt
=q(0)(1+ t) (C3)

dz

dt
=v (C4)

Integrating Equation (C3)

h(z, t)=q(0)

(
t+ t2

2

)
+c1 (C5)

c1 is integration constant. Using h(z(0),0),c1 is given by

c1=h(z(0),0)=h(�(0),0) (C6)

Integrating Equation (C4), one gets

z(t)=vt+c2 (C7)

Putting z(0)=�(0) (say) in Equation (C7)

c2=�(0) (C8)
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From Equations (C7) and (C8), one may obtain

z(t)−vt=�(0) (C9)

From Equations (C6) and (C9), one may also obtain

c1=h(z(t)−vt,0) (C10)

From Equations (C5), (C9) and (C10), one may write

h(z, t)=q(0)

(
t+ t2

2

)
+h(z(t)−vt,0) (C11)

Substituting IC: h(z,0)=hi +az in Equation (C11)

h(z, t)=q(0)

(
t+ t2

2

)
+hi +a(z(t)−vt) (C12)

Putting a=(hN −hi )/�(0) (assumed) and h(z=�(t), t)=hN (hN is enthalpy at boiling boundary)
in Equation (C12), one may obtain

�(t)=vt+
hN −hi −q(0)

(
t+ t2

2

)

hN −hi
�(0) (C13)

In Equation (C13), v is constant, and hi and hN are not time-dependent.

NOMENCLATURE

Symbols

cp specific heat (J/kgK)
D diameter of flow channel, m
E error, dimensionless
f degree of closeness of numeral solution to exact solution, dimensionless
h phase enthalpy, J/kg
k thermal conductivity, W/mK
N number of computation cells in single-phase liquid zone, dimensionless
p pressure, N/m2

T temperature, K
Pe Peclet number, dimensionless
Q heat transfer rate, W/m3

q heat transfer rate, W/kg
r grid refinement ratio
q(0) heat transfer rate at t=0
q ′′ heat flux, W/m2

t time, s
v phase velocity, m/s
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z axial length, m
�z grid spacing, m

Greek letters

� phase density, kg/m3

� top boundary position of a node from inlet, m
� boiling height at t=0
��n nodal height of nth node=�n−�n−1, m
� transportation delay, s
� order of convergence
� scalar quantity

Subscripts

l liquid
g vapor
h hydraulic
i inlet
n node no.
w wall
sat saturation
�, N boiling boundary

Superscripts

′ deviation
exact exact solution
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17. Demirdžić I, Perić M. Space conservation laws in finite volume calculations of fluid. International Journal for
Numerical Methods in Fluids 1998; 8:1037–1050.

18. LeVeque RJ. Numerical Methods for Conservation Laws. Birkhauser Verlag: Boston, 1992.
19. LeVeque R, Russell RD, Ruuth S. Final Report-Conference on Computational Techniques for Moving Interfaces,

Banff, AB, Canada, 23–28 August 2003.
20. Patankar SV. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation: Washington, 1980.
21. Thomas PD, Lombard CK. Geometric conservation law and its application to flow computations on moving

grids. AIAA Journal 1979; 17:1030–1037.
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